Home
Class 10
MATHS
[tan^(-1)(x sqrt(3))/(2x-x)" and "B=tan^...

[tan^(-1)(x sqrt(3))/(2x-x)" and "B=tan^(-1)((2x-lambda)/(sqrt(x^(2)))]],[" then the value of "A-B" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=tan^(-1)((x sqrt(3))/(2k-x)) and B=tan^(-1)((2x-k)/(k sqrt(3))) then find the value of A-B(A)0^(@)(B)30^(@)(C)60^(@)(D)45^(@)

If alpha=tan^(-1)((sqrt(3)x)/(2 lambda-x)),beta=tan^(-1)((2x-lambda)/(lambda sqrt(3))) then one of the value of alpha-beta is

If alpha=tan^(-1)((sqrt(3)x)/(2y-x)),beta=tan^(-1)((2x-y)/(sqrt(3y)))" then "alpha-beta=

2Tan^(-1)((sqrt(a-b))/(a+b)"tan"x/2)=

(tan^(-1)x)/(sqrt(1-x^(2))) withrespectto sin ^(-1)(2x sqrt(1-x^(2)))

If tan^(-1) (sqrt( 1 +x^(2)) -1)/x = lambda tan^(-1)x then the value of lambda is

int(1+tan^(2)x)/(sqrt(tan^(2)x+3))

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=