Home
Class 11
MATHS
1^(2)+3^(2)+5^(2)+...+(2n-1)^(2)=(n(2n-1...

1^(2)+3^(2)+5^(2)+...+(2n-1)^(2)=(n(2n-1)(2n+1))/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following by using the principle of mathematical induction for all n in N : 1^2+3^2+5^2+dotdotdot+(2n-1)^2=(n(2n-1)(2n+1))/3

Prove the following by the method of induction for all n in N : 1^2 + 3^2 + 5^2 + ... + (2n - 1)^2 = n/3 (2n -1) (2n +1)

Find the sum of series upto n terms ((2n+1)/(2n-1))+3((2n+1)/(2n-1))^(2)+5((2n+1)/(2n-1))^(3)+

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

P(n) : 1^(2) + 2^(2) + 3^(2) + .......+ n^(2) = n/6(n+1) (2n+1) n in N is true then 1^(2) +2^(2) +3^(2) + ........ + 10^(2) = .......

(1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+.....+(n^(2))/ ((2n-1)(2n+1))=((n)(n+1))/((2(2n+1)))

1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(2n+1))

Prove that 1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(2n+1))