Home
Class 10
MATHS
(1)/(sin x*cos x+2cos^(2)x)...

(1)/(sin x*cos x+2cos^(2)x)

Promotional Banner

Similar Questions

Explore conceptually related problems

int (1)/(2 sin^(2) x + 3 sin x cos x - 2 cos^(2) x ) dx =

((sin x+cos x)^(2))/((sin x-cos x)^(2))

(1+sin x+cos x+sin2x+cos2x)/(tan2x)=0

f(x)=sqrt(sin(cos x))+ln(-2cos^(2)x+3cos x+1)+e^(cos^(-1))((2sin x+1)/(2sqrt(2sin x)))

Ltquad x rarr0 (1-cos ^ (2) (sin x) -cos (sin ^ (2) x) + cos ^ (2) (sin x) cos (sin ^ (2) x)) / (x ^ ( 6)) =

Integrate the following: int{(5cos^(3)x+2sin^(3)x)/(2sin^(2)x*cos^(2)x)+sqrt(1+sin2x)+(1+2sin x)/(cos^(2)x)+(1-cos2x)/(1+cos2x)}dx

If maximum and minimum values of the determinant |{:(1 + cos^(2)x , sin^(2) x, cos 2x),(cos^(2) x , 1 + sin^(2)x, cos 2x),(cos^(2) x , sin^(2) x , 1 + cos 2 x):}| are alpha and beta then

If f(x)=(1-sin2x+cos2x)/(2cos2x), then the value of f(16^(0))*f(29^(0)) is (1)/(2)(1)/(4)1(3)/(4)

Prove that (1 + sin x-cos x) / (1 + sin x + cos x) + (1 + sin x + cos x) / (1 + sin x-cos x) = 2cos ecx