Home
Class 12
MATHS
Let f be a twice differentiable fu...

Let `f` be a twice differentiable function on [0,2] such that `f(0)=0,f(1)=2,f(2)=4,` then prove that `f^(prime)(alpha)=2\ for\ som e\ alpha\ in (0,1)` `f^(prime)(beta)=2\ for\ som e\ beta\ in (1,2)` `f' '(gamma)=0\ for\ som e\ gamma\ in (0,2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[0,4]rarr R be a differentiable function then for some alpha,beta in (0,2)int_(0)^(4)f(t)dt

Let f(x) be a differentiable function and f(alpha)=f(beta)=0(alpha< beta), then the interval (alpha,beta)

Let f(x) be a differentiable function and f(alpha)=f(beta)=0(alpha

Let f be any continuous function on [0, 2] and twice differentiable on (0, 2). If f(0) = 0, f(1) = 1 and f(2) = 2, then :

Let f(x) be a non-constant twice differentiable function defined on (-oo,oo) such that f(x)=f(1-x)a n df^(prime)(1/4)=0. Then (a) f^(prime)(x) vanishes at least twice on [0,1] (b) f^(prime)(1/2)=0 (c) int_(-1/2)^(1/2)f(x+1/2)sinxdx=0 (d) int_(-1/2)^(1/2)f(t)e^(sinpit)dt=int_(1/2)^1f(1-t)e^(sinpit)dt

Let f(x) be a non-constant twice differentiable function defined on (-oo,oo) such that f(x)=f(1-x)a n df^(prime)(1/4)=0. Then (a) f^(prime)(x) vanishes at least twice on [0,1] (b) f^(prime)(1/2)=0 (c) int_(-1/2)^(1/2)f(x+1/2)sinxdx=0 (d) int_(-1/2)^(1/2)f(t)e^(sinpit)dt=int_(1/2)^1f(1-t)e^(sinpit)dt

If f: RvecR is a differentiable function such that f^(prime)(x)>2f(x)fora l lxRa n df(0)=1,t h e n : f(x) is decreasing in (0,oo) f^(prime)(x) e^(2x)in(0,oo)

If f(x) is a twice differentiable function such that f(a)=0,f(b)=2,f(c)=-1,f(d)=2,f(e)=0 where a

If f(x) is a twice differentiable function such that f(a)=0, f(b)=2, f(c)=-1,f(d)=2, f(e)=0 where a < b < c < d e, then the minimum number of zeroes of g(x) = f'(x)^2+f''(x)f(x) in the interval [a, e] is

If f(x) is a twice differentiable function such that f(a)=0, f(b)=2, f(c)=-1,f(d)=2, f(e)=0 where a < b < c < d e, then the minimum number of zeroes of g(x) = f'(x)^2+f''(x)f(x) in the interval [a, e] is