Home
Class 12
MATHS
Evaluate the determinantDelta=|[1,2,4],[...

Evaluate the determinant`Delta=|[1,2,4],[-1,3,0], [4, 1, 0]|`

Text Solution

AI Generated Solution

To evaluate the determinant \( \Delta = \begin{vmatrix} 1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0 \end{vmatrix} \), we will use the method of cofactor expansion along the first row. ### Step 1: Write down the determinant \[ \Delta = \begin{vmatrix} 1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0 \end{vmatrix} \] ### Step 2: Expand the determinant using the first row ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise MISCELLANEOUS EXERCISE|19 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.6|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the determinant Delta=det[[1,2,4-1,3,04,1,0]]

In the determinant, Delta = |[-2, 5, -1], [4, 7, 0], [5, -3, 1]|, the sum of the minors of elements of third row is

Find minor or element 5 in the determinant Delta=|{:(2,4,3),(1,5,2),(-1,4,1):}|

Consider the determinants Delta=|{:(2,-1,3),(1,1,1),(1,-1,1):}|,Delta'=|{:(2,0,-2),(-2,-1,1),(-4,1,3):}| STATEMENT-1 Delta'=Delta^2 . STATEMENT-2 : The determinant formed by the cofactors of the elements of a determinant of order 3 is equal in value to the square of the original determinant.

Evaluate the following determinants by two method : |{:(1,2,4),(-1,3,0),(4,1,0):}|

Find the minors and cofactors of the elements of the following determinants: abs([1,0,4],[3,5,-1],[0,0,2])

If x epsilon R the determinant Delta=|(1,cosx,0),(-1,1-cosx,sinx+cosx),(0,-1,1-sqrt(2)sin(x+pi//4))| equals

Evaluate the following : [[1, 1, 1]] [[1,0,0],[0,1,0],[0,0,1]][[4],[4],[4]]

Write minors and cofactors of the elements of the determinants: |{:(1,0,4),(3,5,-1),(0,1,2):}|

NCERT-DETERMINANTS-SOLVED EXAMPLES
  1. Evaluate |[2,4],[-1,2]|

    Text Solution

    |

  2. Evaluate the determinantDelta=|[1,2,4],[-1,3,0], [4, 1, 0]|

    Text Solution

    |

  3. Evaluate |(x,x+1),(x-1,x)|

    Text Solution

    |

  4. Find values of x for which abs((3,x),(x,1))=abs((3,2),(4,1))

    Text Solution

    |

  5. Evaluate Delta=|[0,sinalpha,-cosalpha],[-sinalpha,0,sinbeta],[cosalpha...

    Text Solution

    |

  6. Verify Property 2 for Delta=|[2,-3, 5],[ 6, 0, 4],[ 1, 5,-7]|

    Text Solution

    |

  7. Verify Property 1 for Delta=|[2,-3, 5],[ 6, 0, 4],[ 1, 5,-7]|

    Text Solution

    |

  8. Write the value of the following determinant: |[102, 18, 36],[ 1, 3, 4...

    Text Solution

    |

  9. Evaluate Delta=|[3, 2, 3],[ 2, 2, 3], [3, 2, 3]|

    Text Solution

    |

  10. Without expanding, prove that Delta=|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0

    Text Solution

    |

  11. EvaluateDelta=|1a b c1b c a1c a b|

    Text Solution

    |

  12. Show that |[a, b, c],[ a+2x, b+2y, c+2z],[ x, y ,z]|=0

    Text Solution

    |

  13. Prove that |[a, a+b, a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b, 10 a+6b+3c]...

    Text Solution

    |

  14. Show that|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc(1+1/a+1/b+1/c)=abc+bc+ca+...

    Text Solution

    |

  15. Find the area of the triangle whose vertices are (3, 8),(-4, 2)and (5,...

    Text Solution

    |

  16. Prove that |b+c a a b c+a b cc a+b|=4a b c

    Text Solution

    |

  17. If x, y, z are different and Delta=|[x,x^2, 1+x^3],[y, y^2,1+y^3],[z, ...

    Text Solution

    |

  18. Find the equation of the line joining A( 1,3) and B (0,0) using deter...

    Text Solution

    |

  19. Find the minor of element 6 in the determinant Delta=|[1, 2, 3],[ 4, 5...

    Text Solution

    |

  20. The sum of three numbers is 6. If we multiply third number by 3 and a...

    Text Solution

    |