Home
Class 12
MATHS
f(x)=e^(x+sin x)...

f(x)=e^(x+sin x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify Rolle's theorem for the function f(x)=e^(x) sin 2x [0, pi/2]

For which value of x, the function f(x)= (e^(sin x))/(4-sqrt(x^(2)-9)) is discontinuous?

Let (d)/(dx)(F(x))=(e^(sin x))/(x),x>0. If int_(1)^(4)2(e^(sin(x^(2))))/(x)dx=F(k)-F(1), then possible value of k is:

Let (d)/(dx)F(x)=((e^( sin x))/(x)),x>0. If int_(1)^(4)(3)/(x)e^(sin(x^(3)))dx=F(k)-F(1), then one of the possible values of k, is: (a)15 (b) 16(cc)63 (d) 64

Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0 , If int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1) , then one of the possible value of k is -

Let (d)/(dx) f(x) = (e^(sin x))/(x) , x gt 0 . If int_(1)^(4) 3/x e^(sin(x^(3)))dx=F(k)-F(1) then one of the possible value of k is

(d)/(dx) F(x) = (e^(sin x))/(x) , x gt 0 . If int_(1)^(4) (2e^(sin x^(2)))/(x) dx=F(K)-F(1) , then one of the possible values of K is :