Home
Class 9
MATHS
" (1) If "a+b+c=0" ,show that ":a^(3)+b^...

" (1) If "a+b+c=0" ,show that ":a^(3)+b^(3)+c^(3)=3abc

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b=c , show that a^(3)+b^(3)+3abc=c^(3)

If a + b + c = 0 , show that a^(3) + b^(3) + c^(3) = 3abc The following are the steps involved in showing the above result. Arrange them in sequential order (A) a^(3) + b^(3) + 3ab (-c) = -c^(3) (B) (a + b)^(3) = (-c)^(3) (C) a + b + c = 0 rArr a + b = -c (D) a^(3) + b^(3) + 3ab (a +b) = -c^(3) (E) a^(3) + b^(3) + c^(2) = 3abc

If a+b+c=0 then prove that a^(3)+b^(3)+c^(3)=3abc

If a + 2b + c= 0 , then show that: a^(3) + 8b^(3) + c^(3)= 6abc

In the formula, a^3+b^3+c^3-3 abc = 1/2 (a+b+c){(a-b)^2+(b-c)^2+(c-a)^2} , if a + b + c != 0 , Show that if a^3 +b^3+c^3= 3abc impliesa=b=c

If a + b + c = 0 , then prove that a^(3)+b^(3)+c^(3)=3abc

(a^(3)+b^(3)-c^(3)+3abc)/(a+b-c)=

If c^(2) != ab and the roots of (c^(2)-ab)x^(2)-2(a^(2)-bc)x+(b^(2)-ac)+0 are equal show that a^(3)+b^(3)+c^(3)=3abc (or) a = 0.

If c^(2) ne ab and the roots of (c^(2)-ab)x^(2)-2(a^(2)-bc)x+(b^(2)-ac)=0 are equal, then show that a^(3)+b^(3)+c^(3)=3abc" or "a=0