Home
Class 11
MATHS
Let 1+ sum(r=1)^10 (3^r C(10,r) + r C(10...

Let `1+ sum_(r=1)^10 (3^r C(10,r) + r C(10,r))=2^10 (alpha 4^5+beta)` where `alpha, beta in N` and `f(x) =x^2-2x-k^2+1` If `alpha, beta` lies betweenm the roots of `f(x)=0` then find the smalles positive integral value of k

Promotional Banner

Similar Questions

Explore conceptually related problems

Let 1+sum_(r=1)^(10)(3^r.^(10)C_r+r.^(10)C_r)=2^(10)(alpha. 4^5+beta) where alpha,beta in N and f(x)=x^2-2x-k^2+1. If alpha,beta lies between the roots of f(x)=0 , then find the smallest positive integral value of kdot

Let 1+sum_(r=1)^(10)(3^r.^(10)C_r+r.^(10)C_r)=2^(10)(alpha. 4^5+beta) where alpha,beta in N and f(x)=x^2-2x-k^2+1. If alpha,beta lies between the roots of f(x)=0 , then find the smallest positive integral value of kdot

Let 1+sum_(r=1)^(10)(3^rdot(10)C_r+rdot(10)C_r)=2^(10)(alpha. 4^5+beta)w h e r ealpha,beta in N andf(x)=x^2-2x-k^2+1. If alpha,beta lies between the roots of f(x)=0 , then find the smallest positive integral value of kdot

Let 1+sum_(r=1)^(10)(3^rdot^(10)C_r+rdot^(10)C_r)=2^(10)(alpha. 4^5+beta)w h e r ealpha,beta in Na n df(x)=x^2-2x-k^2+1. If alpha,beta lies between the roots of f(x)=0 , then find the smallest positive integral value of kdot

If alpha, beta are the roots of x^(2) - 3x + a = 0 , a in R and lt 1 lt beta, then find the values of a

If alpha, beta are the roots of x^(2) - 3x + a = 0 , a in R and lt 1 lt beta, then find the values of a

If f(x) = 5 log_(5)x then f^(-1)(alpha - beta) where alpha , beta in R is equal to

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha,beta are the roots of x^(2)-px+r=0 and alpha+1,beta-1 are the roots of x^(2)-qx+r=0 ,then r is