Home
Class 14
MATHS
int(0)^(oo)=(log(1+x^(2)))/(1+x^(2))dx...

int_(0)^(oo)=(log(1+x^(2)))/(1+x^(2))dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)((ln(1+x^(2)))/(1+x^(2)))dx .

Evaluate int_(0)^(a)((log(1+ax))/(1+x^(2))dx)

int_(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

int_(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx

int_(0)^(oo)log(x+(1)/(x))(dx)/(1+x^(2))

int_(0)^(oo)log(x+(1)/(x))(dx)/(1+x^(2))

Evaluate int_(0)^(oo)log(x+(1)/(x))(dx)/(1+x^(2))