Home
Class 11
MATHS
[" If "i=sqrt(-1)," then "4+5(-(1)/(2)+(...

[" If "i=sqrt(-1)," then "4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)],[+3(-(1)/(2)+(i sqrt(3))/(2))^(365)" is equal to "-]

Promotional Banner

Similar Questions

Explore conceptually related problems

If i=sqrt(-1), then 4+5(-(1)/(2)+i(sqrt(3))/(2))^(334)+3(-(1)/(2)+i(sqrt(3))/(2))^(335) is equal to-

If i = sqrt(-1) , then 4 + 3 (-(1)/(2) + i(sqrt(3))/(2))^(127)+5(-(1)/(2)+i(sqrt(3))/(2))^(124) is equal to

If i=sqrt(-1) , then 4+5(-1/2+(isqrt(3))/(2))^(334)+3(-1/2+(isqrt(3))/(2))^(365) is equal to

Prove that 4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(335)=i sqrt(3)

If i=sqrt(-1) , then 4+5(-1/2+(isqrt(3))/2)^(334)+3(-1/2+(isqrt(3))/2)^(365) is equal to : a) 1-isqrt(3) b) -1+isqrt(3) c) isqrt(3) d) -isqrt(3)

((-1+i sqrt(3))/(2))^(3 n)+((-1-i sqrt(3))/(2))^(3 n)=

((-1+i sqrt(3))/(2))^(50)+((-1-i sqrt(3))/(2))^(50)=

If i=sqrt(-1) then 4+5(-1/2+(isqrt3)/2)^334+3(-1/2+(isqrt3)/2)^365 is equal to

Find the value of 4+5[-(1)/(2)-i(sqrt(3))/(2)]^(344)+3[-(1)/(2)+i(sqrt(3))/(2)]^(365) (i=sqrt(-1))