Home
Class 12
MATHS
log(x)(9x^(2))*(log(3)x)^(2)=4...

log_(x)(9x^(2))*(log_(3)x)^(2)=4

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(x)(9x^(2))*log_(3)^(2)(x)=4

sqrt(log_(3)(3x^(2))log_(9)(81x))=log_(9)x^(3)

sqrt(log_(2)(2x^(2))log_(4)(16x))=log_(4)x^(3)

For what values of x,log_(0.3)(x^(2)+8)>log_(0.3)(9x)

If log_(4) x + log_(8)x^(2) + log_(16)x^(3) = (23)/(2) , then log_(x) 8 =

The value of x, satisfying the inequality log_(0.3)(x^(2)+8)>log_(0.3)9x, lies in

Solve for x:(a) log_(0.3)(x^(2)+8) gt log_(0.3)(9x) , b) log_(7)( (2x-6)/(2x-1)) gt 0

Solve for x:(a) log_(0.3)(x^(2)+8) gt log_(0.3)(9x) , b) log_(7)( (2x-6)/(2x-1)) gt 0

"If" log_((3x-1))(x-2)= log_((9x^(2)-6x+1))(2x^(2)-10x-2) , then x equals-