Home
Class 12
MATHS
If alpha, beta are the roots of x^2 + ax...

If `alpha, beta `are the roots of `x^2 + ax + b = 0` then maximum value of `-(x^2 + ax + b)-(alpha-beta)^2/4` `(i) (a^2-4b)/4 (ii) (b^2-49)/4 (iii) 1 (iv) 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are roots of the equation x^(2) + ax + b = 0 , then maximum value of - x^(2) + ax + b + (1)/(4) (alpha - beta )^(2) is

If alpha , beta are the roots of ax^2+bx +c=0 then (a alpha + b)^(-2)+( a beta + b)^(-2) =

If alpha, beta are the roots of x^(2)-ax+b=0 , then lim_(xrarralpha)(e^(x^(2)-ax+b))/(x-alpha)=

If alpha and beta are the roots of x ^(2) - ax + b ^(2) = 0, then alpha ^(2) + beta ^(2) is equal to

IF alpha , beta are the roots of ax^2+bx +c=0 then (a alpha + b)^(-2)+( a beta + b)^(-2) =

If alpha and beta are the roots of x^(2) - ax + b^(2) = 0, then alpha^(2) + beta^(2) is equal to :

IF alpha , beta are the roots of x^2 - ax +b=0 , then the whose roots are (alpha + beta ) /( alpha ) , (alpha + beta)/( beta) is

if alpha and beta are the roots of ax^(2)+bx+c=0 then the value of {(1)/(a alpha+b)+(1)/(a beta+b)} is