Home
Class 12
MATHS
The volume of the parallelepiped whose e...

The volume of the parallelepiped whose edges are
`veca=2hati-3hatj+4hatk, vecb=hati+2hatj-hatk` and `vecc=2hati-hatj+2hatk` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The volume of the parallelepiped formed by the vectors, veca=2hati+3hatj-hatk, vecb = hati-4hatj+2hatk and vecc=5hati+hatj+hatk is

If veca = hati+2hatj-hatk , vecb = hati+hatj+2hatk , vecc = 2hati-hatj then

Find the volume of the parallelepiped whose coterminus edges are given by the vectors 2hati-3hatj+4hatk , hati+2hatj-hatk and 3hati-hatj+2hatk .

If veca = hati+2hatj+hatk , vecb = 2hati- 2hatj + 2hatk and vecc = hati + 2hatj + hatk then

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Find the volume of a parallelopiped whose edges are represented by the vectors: veca =2hati-3hatj-4hatk, vecb=hati+2hatj-2hatk, and vecc=3hati+hatj+2hatk .