Home
Class 11
MATHS
Prove that if p is a prime number greate...

Prove that if p is a prime number greater than 2, then the difference `[(2+sqrt(5))^p]-2^(p+1)` is divisible by p, where [.] denotes greatest integer.

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: If p is a prime number (p!=2), then [(2+sqrt(5))^p]-2^(p+1) is always divisible by p(w h e r e[dot] denotes the greatest integer function). Statement 2: if n prime, then ^n C_1,^n C_2,^n C_2 ,^n C_(n-1) must be divisible by ndot

Statement 1: If p is a prime number (p!=2), then [(2+sqrt(5))^p]-2^(p+1) is always divisible by p(w h e r e[dot] denotes the greatest integer function). Statement 2: if n prime, then ^n C_1,^n C_2,^n C_2 ,^n C_(n-1) must be divisible by ndot

Statement 1: If p is a prime number (p!=2), then [(2+sqrt(5))^p]-2^(p+1) is always divisible by p(w h e r e[dot] denotes the greatest integer function). Statement 2: if n prime, then ^n C_1,^n C_2,^n C_2 ,^n C_(n-1) must be divisible by ndot

Statement 1: If p is a prime number (p!=2), then [(2+sqrt(5))^p]-2^(p+1) is always divisible by p(w h e r e[dot] denotes the greatest integer function). Statement 2: if n prime, then ^n C_1,^n C_2,^n C_2 ,^n C_(n-1) must be divisible by ndot

Statement 1: If p is a prime number (p!=2), then [(2+sqrt(5))^p]-2^(p+1) is always divisible by p(w h e r e[dot] denotes the greatest integer function). Statement 2: if n prime, then ^n C_1,^n C_2,^n C_2 ,^n C_(n-1) must be divisible by ndot

Let p be a prime number such that 3

Statement-1: the highest power of 3 in .^(50)C_(10) is 4. Statement-2: If p is any prime number, then power of p in n! is equal to [n/p]+[n/p^(2)]+[n/p^(3)] + . . ., where [*] denotes the greatest integer function.

Statement-1: the highest power of 3 in .^(50)C_(10) is 4. Statement-2: If p is any prime number, then power of p in n! is equal to [n/p]+[n/p^(2)]+[n/p^(3)] + . . ., where [*] denotes the greatest integer function.

Statement-1: the highest power of 3 in .^(50)C_(10) is 4. Statement-2: If p is any prime number, then power of p in n! is equal to [n/p]+[n/p^(2)]+[n/p^(3)] + . . ., where [*] denotes the greatest integer function.

Statement-1: the highest power of 3 in .^(50)C_(10) is 4. Statement-2: If p is any prime number, then power of p in n! is equal to [n/p]+[n/p^(2)]+[n/p^(3)] + . . ., where [*] denotes the greatest integer function.