Home
Class 12
MATHS
The interval of increase of the function...

The interval of increase of the function `f(x)=x-e^x+tan((2pi)/7)` is
(a) `(0, oo)`
(b) `(-oo, 0)`
(c) `(1, oo)`
(d) `(-oo, 1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The interval of increase of the function f(x)=x-e^(x)+tan(2 pi/7) is (a) (0,oo)(b)(-oo,0)(c)(1,oo)(d)(-oo,1)

Range of the function f(x)=(ln x)/(sqrt(x)) is (a) (-oo,\ e) (b) (-oo,\ e^2) (c) (-oo,2/e) (d) (-oo,1/e)

f(x) = x^2 increases on: (a) ( 0,oo) (b) (-oo,0) (c) (-7,-3) (d) (-oo,-3)

The set of points where the function f(x)=x|x| is differentiable is (a) (-oo,\ oo) (b) (-oo,\ 0)uu(0,\ oo) (c) (0,\ oo) (d) [0,\ oo]

The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is (a) (-oo,oo) (b) [0,1] (-1,0] (d) (-1,1)

The function f(x)=x^9+3x^7+64 is increasing on (a) R (b) (-oo,\ 0) (c) (0,\ oo) (d) R_0

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (A) (-oo,oo) (B) (0,oo (C) (-oo,""0) (D) (-oo,oo)"-"{0}

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}