Home
Class 10
MATHS
If x ne pm 1, then (x+1)/(x-1)-(x-1)/(x+...

If `x ne pm 1`, then `(x+1)/(x-1)-(x-1)/(x+1)=`

A

`(2x)/(x-1)`

B

`(2x)/(x^(2)+1)`

C

`(2x)/(x^(2)-1)`

D

`(4x)/(x^(2)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((x+1)/(x-1) - (x-1)/(x+1)\), we will follow these steps: ### Step-by-Step Solution: 1. **Identify the expression**: \[ \frac{x+1}{x-1} - \frac{x-1}{x+1} \] 2. **Find a common denominator**: The common denominator for the two fractions is \((x-1)(x+1)\). 3. **Rewrite each fraction with the common denominator**: \[ \frac{(x+1)(x+1)}{(x-1)(x+1)} - \frac{(x-1)(x-1)}{(x-1)(x+1)} \] This simplifies to: \[ \frac{(x+1)^2 - (x-1)^2}{(x-1)(x+1)} \] 4. **Expand the numerators**: - Expanding \((x+1)^2\): \[ (x+1)^2 = x^2 + 2x + 1 \] - Expanding \((x-1)^2\): \[ (x-1)^2 = x^2 - 2x + 1 \] 5. **Substituting back into the expression**: \[ \frac{x^2 + 2x + 1 - (x^2 - 2x + 1)}{(x-1)(x+1)} \] 6. **Combine like terms in the numerator**: \[ x^2 + 2x + 1 - x^2 + 2x - 1 = 4x \] So, the expression simplifies to: \[ \frac{4x}{(x-1)(x+1)} \] 7. **Final result**: The final simplified expression is: \[ \frac{4x}{x^2 - 1} \] (since \(x^2 - 1 = (x-1)(x+1)\)) ### Final Answer: \[ \frac{4x}{x^2 - 1} \]

To solve the expression \((x+1)/(x-1) - (x-1)/(x+1)\), we will follow these steps: ### Step-by-Step Solution: 1. **Identify the expression**: \[ \frac{x+1}{x-1} - \frac{x-1}{x+1} \] ...
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATION

    KAPLAN|Exercise Multiple Choice Question|20 Videos
  • TRIGONOMETRY

    KAPLAN|Exercise TRIGONOMETRY FOLLOW - UP TEST|6 Videos

Similar Questions

Explore conceptually related problems

Solve by factorization: (x+1)/(x-1)-(x-1)/(x+1)=5/6,\ \ x!=1,\ -1

If f(x)= |1 x x+1 2x x(x-1)(x+1)x3x(x-1)x(x-1)(x-2)(x+1)x(x-1)| then f(500) is equal to a. 0 b. 1 c. 500 d. -500

If x - (1)/(x) = y , x ne 0 , find the value of (x- (1)/ (x) - 2y ) ^(3)

If m and n are roots of the equation : (1)/(x)-(1)/(x-2)=3 , where x ne 0 and x ne 2 , find mxxn .

Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x) can be

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)=(x+1)/(x-1) , x ne 1 , then f^(-1)(x) is

If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", " x= 1):}, is continuous at x=1,find the value of k.

The solution set of (x+(1)/(x) ) ^2 -3/2 (x-(1)/(x)) =4 when x ne 0 is