Home
Class 10
MATHS
12sqrt(3)-(8cos x)((3sqrt(3))/(2)cos x)=...

`12sqrt(3)-(8cos x)((3sqrt(3))/(2)cos x)=`

A

`sin^(2)x`

B

`12sqrt(3)sin^(2)x`

C

`12sqrt(3)-12sqrt(3)cos x`

D

`12sqrt(3)cos^(2)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 12\sqrt{3} - (8\cos x)\left(\frac{3\sqrt{3}}{2}\cos x\right) \), we will follow these steps: ### Step 1: Simplify the expression We start with the expression: \[ 12\sqrt{3} - (8\cos x)\left(\frac{3\sqrt{3}}{2}\cos x\right) \] ### Step 2: Multiply the terms in the second part Now, we need to multiply \( 8\cos x \) and \( \frac{3\sqrt{3}}{2}\cos x \): \[ (8\cos x)\left(\frac{3\sqrt{3}}{2}\cos x\right) = 8 \cdot \frac{3\sqrt{3}}{2} \cdot \cos^2 x \] Calculating the constant: \[ 8 \cdot \frac{3\sqrt{3}}{2} = 12\sqrt{3} \] Thus, we have: \[ 12\sqrt{3}\cos^2 x \] ### Step 3: Substitute back into the expression Now we can substitute this back into the original expression: \[ 12\sqrt{3} - 12\sqrt{3}\cos^2 x \] ### Step 4: Factor out the common term We can factor out \( 12\sqrt{3} \): \[ 12\sqrt{3}(1 - \cos^2 x) \] ### Step 5: Use the trigonometric identity Using the identity \( \sin^2 x + \cos^2 x = 1 \), we can replace \( 1 - \cos^2 x \) with \( \sin^2 x \): \[ 12\sqrt{3}(1 - \cos^2 x) = 12\sqrt{3}\sin^2 x \] ### Final Result Thus, the simplified expression is: \[ 12\sqrt{3}\sin^2 x \]

To solve the expression \( 12\sqrt{3} - (8\cos x)\left(\frac{3\sqrt{3}}{2}\cos x\right) \), we will follow these steps: ### Step 1: Simplify the expression We start with the expression: \[ 12\sqrt{3} - (8\cos x)\left(\frac{3\sqrt{3}}{2}\cos x\right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos (pi/12) = (sqrt(2) + sqrt(6))/(4) , then all x in (0,pi/2) such that (sqrt(3)-1)/(sin x) + (sqrt(3)+1)/(cos x) = 4sqrt(2) , then find x.

If cosx=(sqrt(3))/(2) , find cos2x.

int(sinx)/(3+4cos^2x)\ dx a. log(3+4cos^2x)+C (b) 1/(2sqrt(3))tan^(-1)((cosx)/(sqrt(3)))+C (c) -1/(2sqrt(3))tan^(-1)((2"\ cos"x)/(sqrt(3)))+C (d) 1/(2sqrt(3))tan^(-1)((2"\ cos"x)/(sqrt(3)))+C

the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

Prove that cos^(-1) (sqrt(1/3))-cos^(-1) (sqrt((1)/(6)))+cos^(-1) ((sqrt(10)-1)/(3sqrt2))=cos^(-1) (2/3)

In each of the following cases find the period of the function if it is periodic. (i) f(x)="sin"(pi x)/(sqrt(2))+"cos"(pi x)/(sqrt(3)) " (ii) " f(x)="sin"(pi x)/(sqrt(3))+"cos"(pi x)/(2sqrt(3))

If (7+4sqrt(3))^(x^(2-8))+(7-4sqrt(3))^(x^(2-8))=14, then x=

Which term of the expansion (sqrt((x)/(3))-(sqrt(3))/(2x))^(12) is independent of x.

if cos^(-1)((2)/(3x))+cos^(-1)((3)/(4x))=(pi)/2, x>3/4 then x= (a) (sqrt(145))/(11) (b) (sqrt(145))/(12) (c) (sqrt(146))/(10) (d) (sqrt(146))/(11)

Evaluate the following integrals int sqrt((cos x- cos^(3)x)/((1-cos^(3)x)))dx