Home
Class 10
MATHS
If cos 2A = (7)/(19), what is the value ...

If `cos 2A = (7)/(19)`, what is the value of `(1)/(cos^(2)A-sin^(2)A)` ?

A

`0.18`

B

`0.37`

C

`0.74`

D

`2.71`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{\cos^2 A - \sin^2 A} \) given that \( \cos 2A = \frac{7}{19} \). ### Step-by-Step Solution: 1. **Use the double angle formula for cosine**: The double angle formula states that: \[ \cos 2A = \cos^2 A - \sin^2 A \] We can substitute the given value into this formula. 2. **Substitute the given value**: From the problem, we know: \[ \cos 2A = \frac{7}{19} \] Therefore, we can write: \[ \cos^2 A - \sin^2 A = \frac{7}{19} \] 3. **Find the reciprocal**: We need to find \( \frac{1}{\cos^2 A - \sin^2 A} \). Since we have already established that \( \cos^2 A - \sin^2 A = \frac{7}{19} \), we take the reciprocal: \[ \frac{1}{\cos^2 A - \sin^2 A} = \frac{1}{\frac{7}{19}} = \frac{19}{7} \] 4. **Convert to decimal form**: Now, we convert \( \frac{19}{7} \) into decimal form: \[ \frac{19}{7} \approx 2.714285714285714 \] Rounding this to two decimal places gives us: \[ \approx 2.71 \] ### Final Answer: Thus, the value of \( \frac{1}{\cos^2 A - \sin^2 A} \) is approximately \( 2.71 \).

To solve the problem, we need to find the value of \( \frac{1}{\cos^2 A - \sin^2 A} \) given that \( \cos 2A = \frac{7}{19} \). ### Step-by-Step Solution: 1. **Use the double angle formula for cosine**: The double angle formula states that: \[ \cos 2A = \cos^2 A - \sin^2 A ...
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (cos^2 67^@-sin^2 23^@) ?

If cos A = (9)/(41) , find the value of (1)/(sin ^(2)A ) - cot ^(2) A

What is the value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3) ?

Find the value of cos 7 ""(1)/(2) ""^(@)

Write the value of cos(2sin^(-1)(1/2))

Calculate the value of A, if : cos3A.(2sin2A-1)=0

Calculate the value of A, if : cos3A.(2sin2A-1)=0

What is the principal value of cos^(-1)cos((2pi)/3)+sin^(-1)sin((2pi)/3)?

Find the value of sin [ arc cos (- 1/2)]

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}] .