If `6sin^(2)theta - sin theta = 1` and `0 le theta le pi`, what is the value of sin `theta` ?
If `6sin^(2)theta - sin theta = 1` and `0 le theta le pi`, what is the value of sin `theta` ?
A
`(1)/(6)`
B
`(1)/(3)`
C
`(1)/(2)`
D
19
Text Solution
AI Generated Solution
The correct Answer is:
To solve the equation \( 6\sin^2\theta - \sin\theta = 1 \) for \( \theta \) in the interval \( 0 \leq \theta \leq \pi \), we can follow these steps:
### Step 1: Substitute \( \sin \theta \) with \( x \)
Let \( x = \sin \theta \). Then, we can rewrite the equation as:
\[
6x^2 - x = 1
\]
### Step 2: Rearrange the equation
Rearranging the equation gives us:
\[
6x^2 - x - 1 = 0
\]
### Step 3: Factor the quadratic equation
Next, we need to factor the quadratic equation. We can do this by finding two numbers that multiply to \( 6 \times (-1) = -6 \) and add to \( -1 \). The numbers \( -3 \) and \( 2 \) work because:
\[
-3 + 2 = -1 \quad \text{and} \quad -3 \times 2 = -6
\]
Thus, we can rewrite the equation as:
\[
6x^2 - 3x + 2x - 1 = 0
\]
### Step 4: Group the terms
Now, we can group the terms:
\[
(6x^2 - 3x) + (2x - 1) = 0
\]
### Step 5: Factor by grouping
Factoring out the common terms gives us:
\[
3x(2x - 1) + 1(2x - 1) = 0
\]
This can be factored further as:
\[
(2x - 1)(3x + 1) = 0
\]
### Step 6: Solve for \( x \)
Setting each factor to zero gives us:
1. \( 2x - 1 = 0 \) → \( x = \frac{1}{2} \)
2. \( 3x + 1 = 0 \) → \( x = -\frac{1}{3} \)
### Step 7: Determine valid solutions
Since \( x = \sin \theta \) and \( \sin \theta \) must be in the range \([-1, 1]\), we check the values:
- \( x = \frac{1}{2} \) is valid.
- \( x = -\frac{1}{3} \) is not valid since sine is positive in the interval \( 0 \leq \theta \leq \pi \).
### Conclusion
Thus, the only valid solution for \( \sin \theta \) is:
\[
\sin \theta = \frac{1}{2}
\]
To solve the equation \( 6\sin^2\theta - \sin\theta = 1 \) for \( \theta \) in the interval \( 0 \leq \theta \leq \pi \), we can follow these steps:
### Step 1: Substitute \( \sin \theta \) with \( x \)
Let \( x = \sin \theta \). Then, we can rewrite the equation as:
\[
6x^2 - x = 1
\]
...
Similar Questions
Explore conceptually related problems
Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .
If 2 cos ^(2) theta + sin theta - 2=0 and 0^(@) le theta le 90 ^(@) find the value of theta.
If sin theta = (1)/(2)cos theta , and 0 le theta le (pi)/(2) , the value of (1)/(2)sin theta is
sin^(3)theta + sin theta - sin theta cos^(2)theta =
To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is
To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is
To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of tan^(2)""(pi)/(7)tan ^(2)""(2pi)/(7) tan ^(2)""(3pi)/(7) is
Let f(theta)= sin theta - cos^(2) theta-1 , where theta in R and m le f(theta) le M . The value of (4m+13) is equal to
Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .
Can 6 sin^2 theta - 7 sin theta + 2 = 0 for any real value of theta ?
Recommended Questions
- If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi, what is the val...
Text Solution
|
- Solve sin^2 theta- cos theta =1/4 " for " theta and write the value...
Text Solution
|
- Find all the value of theta satisfying the equation , sin 7 theta ...
Text Solution
|
- If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi, what is the val...
Text Solution
|
- If sin theta = (1)/(2)cos theta, and 0 le theta le (pi)/(2), the value...
Text Solution
|
- If sin 7theta + sin 4theta + sin theta = 0, 0 le theta le pi//2 , then...
Text Solution
|
- Let Delta=|(1,sin theta, 1),(-sin theta, 1, sin theta),(-1,-sin theta,...
Text Solution
|
- The value of theta which satisfy r sin theta=3 and r=4(1+sin theta), 0...
Text Solution
|
- The value of theta which satisfy r sin theta = 3 and r = 4 ( 1+ sin th...
Text Solution
|