Home
Class 10
MATHS
sin^(3)theta + sin theta - sin theta cos...

`sin^(3)theta + sin theta - sin theta cos^(2)theta =`

A

0

B

`sin theta`

C

`sin 2 theta`

D

`2sin^(3)theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^3 \theta + \sin \theta - \sin \theta \cos^2 \theta \), we can follow these steps: ### Step 1: Write down the original expression We start with the expression: \[ \sin^3 \theta + \sin \theta - \sin \theta \cos^2 \theta \] ### Step 2: Use the Pythagorean identity We know from the Pythagorean identity that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] This allows us to express \( \cos^2 \theta \) in terms of \( \sin^2 \theta \): \[ \cos^2 \theta = 1 - \sin^2 \theta \] ### Step 3: Substitute \( \cos^2 \theta \) in the expression Now, we can substitute \( \cos^2 \theta \) in our expression: \[ \sin^3 \theta + \sin \theta - \sin \theta (1 - \sin^2 \theta) \] ### Step 4: Distribute \( \sin \theta \) Next, we distribute \( \sin \theta \) in the expression: \[ \sin^3 \theta + \sin \theta - \sin \theta + \sin \theta \sin^2 \theta \] ### Step 5: Simplify the expression Notice that \( \sin \theta - \sin \theta \) cancels out: \[ \sin^3 \theta + \sin \theta \sin^2 \theta \] ### Step 6: Factor out \( \sin \theta \) We can factor \( \sin \theta \) out from the remaining terms: \[ \sin \theta (\sin^2 \theta + \sin^2 \theta) = \sin \theta (2 \sin^2 \theta) \] ### Step 7: Final expression Thus, we have: \[ 2 \sin^3 \theta \] ### Conclusion The final simplified expression is: \[ 2 \sin^3 \theta \] ### Answer Therefore, the answer is \( 2 \sin^3 \theta \), which corresponds to option four. ---

To solve the expression \( \sin^3 \theta + \sin \theta - \sin \theta \cos^2 \theta \), we can follow these steps: ### Step 1: Write down the original expression We start with the expression: \[ \sin^3 \theta + \sin \theta - \sin \theta \cos^2 \theta \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin theta- cos theta) is positive for all theta in

Prove that : (sin theta + sin 3theta + sin 5theta)/(cos theta + cos 3theta + cos 5theta) = tan 3theta

Prove that : (sin 5theta - 2 sin 3theta + sin theta)/(cos 5theta -cos theta) = tan theta

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

If theta lies in the first quadrant and 5 tan theta = 4 , " then " (5 sin theta - 3 cos theta )/( sin theta + 2 cos theta )=