Home
Class 10
MATHS
((100^(12))(10^(4)))/(10^(2))=...

`((100^(12))(10^(4)))/(10^(2))=`

A

`10^(8)`

B

`10^(14)`

C

`10^(24)`

D

`10^(26)`

Text Solution

Verified by Experts

The correct Answer is:
D

Put the whole thing in terms of a power of 10. `(100)^(12)=(10^(2))^(12)=10^(24)`. Therefore,
`((100)^(12)(10)^(4))/((10)^(2))=((10^(24))(10^(4)))/(10^(2))`
`=(10^(28))/(10^(2))=10^(28-2)=10^(26)`
Promotional Banner

Topper's Solved these Questions

  • PRACTICE TEST 1

    KAPLAN|Exercise PRACTICE TEST|50 Videos
  • PRACTICE TEST 3

    KAPLAN|Exercise PRACTICE TEST|50 Videos

Similar Questions

Explore conceptually related problems

lim_(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) is equal to

lim_(xrarroo)((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) is equal to (a) 0 (b) 1 (c) 10 (d) 100

Given (log _(10 ) ^(16))/(log _(10 ) ^(2)) = log _(10 ) ^(a) find the value of ( a+ 100) .

Find the sum of the infinite series (7)/(5)(1+(1)/(10^(2))+(1.3)/(1.2).(1)/(10^(4))+(1.3.5)/(1.2.3).(1)/(10^(6))+....)

Re [((cos2^(@)+isin2^(@))^(100)(cos5^(@)+isin5^(@))^(200))/((cos10^(@)+isin10^(@))^(126))]

Prove the following identieties using the theory of permutation where C_(0),C_(1),C_(2),……C_(n) are the combinatorial coefficents in the expansion of (1+x)^n,n in N: ""^(100)C_(10)+5.""^(100)C_(11)+10 .""^(100)C_(12)+ 10.""^(100)C_(13)+ 10.""^(100)C_(14)+ 10.""^(100)C_(15)=""^(105)C_(90)

Which one of the following is not equal to ((100)/9)^(-3/2) ? (a)\ (9/(100))^(3/2) (b) 1/(((100)/9)^(3/2)) (c)\ 3/(10)xx3/(10)xx3/(10) (d) sqrt((100)/9\ x(100)/9\ x(100)/9\ )

For all nonzero y and z , ((yxx10^5)(zxx0.0001))/((yxx100,000)(zxx10^(-4)))=?

100ml 0.1M H_(3)PO_(4) is mixed with 50ml of 0.1M NaOH. What is the pH of the resultant solution? (Successive dissociation constant of H_(3) PO_(4) "are" 10^(-3) , 10^(-8) and 10^(-12) respectively ?

(1/4)^(-10)xx(2/5)^(-10)