Home
Class 10
MATHS
f(x)=3x^((2)/(3)) f(64)=...

`f(x)=3x^((2)/(3))`
`f(64)=`

A

48

B

128

C

256

D

1204

Text Solution

Verified by Experts

The correct Answer is:
A

`x^((1)/(3))` is the cube root of x. `x^((2)/(3))` is the square of `x^((1)/(3)) (x^((1)/(3)))^(2)= x^((1)/(3))xx x^((1)/(3))=x^(((1)/(3)+(1)/(3)))=x^((2)/(3))`. The cube root of 64 is 4, `4^(2)=16, 3xx 16=48`. So f(64) = 48.
Promotional Banner

Topper's Solved these Questions

  • PRACTICE TEST 3

    KAPLAN|Exercise PRACTICE TEST|50 Videos
  • QUADRATIC EQUATIONS AND THEIR GRAPHS

    KAPLAN|Exercise Multiple Choice Question|20 Videos

Similar Questions

Explore conceptually related problems

If f^(prime)(x)=3x^2-2/(x^3) and f(1)=0 , find f(x) .

Find f(x) when it is given by f(x)=max{x^(3),x^(2),(1)/(64)},AA x in [0, oo).

If f(x)=(3x+2)/(5x-3) , then f[f(x)] is equal to:

Let f: R-{3/5}->R be defined by f(x)=(3x+2)/(5x-3) . Then (a).f^-1(x)=f(x). (b).f-1(x)= -f(x). (c). (fof)=x (d). f-1(x)=(1/19)f(x)

If f_(1)(x) = 2x + 3, f_(2)(x) = 3x^(2) + 5, f_(3)(x) = x + cos x are defined from R rarr R , then f_(1), f_(2) and f_(3) are

If f(x)=3x^(2)-2x+4,f(-2)=

For xgt3,f(x)=3x-2 and for -2lexle2,f(x)=x^(2)-2 , find f(0)+f(4)

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. f(x) is

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The value of f'(1)+f''(2)+f'''(3) is

If f(x) = (3x-2)/(2x-3),AA x in R -{(3)/(2)} , " Find " f^(-1)