Home
Class 10
MATHS
If (n^(n))/(n!)=(nx)/((n-1)!), x =...

If `(n^(n))/(n!)=(nx)/((n-1)!), x =`

A

`n^(n-2)`

B

`n^(n-1)`

C

`n^(n+1)`

D

`n^((1)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
A

`(n^(n))/(n!)=(n xx n^(n-1))/(n xx (n-1)!)=(n)/(n)xx(n^(n-1))/((n-1)!)`
`=1xx(n^(n-1))/((n-1)!)=(n^(n-1))/((n-1)!)`
So `nx = n^(n-1)`. Dividing both sides by n gets you `x = (n^(n-1))/(n)=n^(n-2)`. Remember that you must subtract exponents when dividing powers. Since the exponent of n is 1, you subtract that value from `n-1`.
Promotional Banner

Topper's Solved these Questions

  • PRACTICE TEST 3

    KAPLAN|Exercise PRACTICE TEST|50 Videos
  • QUADRATIC EQUATIONS AND THEIR GRAPHS

    KAPLAN|Exercise Multiple Choice Question|20 Videos

Similar Questions

Explore conceptually related problems

(d^n)/(dx^n)(logx)= ((n-1)!)/(x^n) (b) (n !)/(x^n) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

Evaluate int((cosx)^(n-1))/((sinx)^(n+1))dx= (A) -cot^n x/n+c (B) -cot^n x/(n+1)+c (C) cot^n x/n+c (D) cot^n x/(n+1)+c

Let C_(n)= int_(1//n+1)^(1//n)(tan^(-1)(nx))/(sin^(-1) (nx)) dx , "then " lim_(n rarr infty) n^(n). C_(n) is equal to

(d^n)/(dx^n)(logx)=? (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (n !)/((n-1)!(n+1)!) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((2n-1)!(2n+1)!) d. none of these

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (a). (n !)/((n-1)!(n+1)!) (b). ((2n)!)/((n-1)!(n+1)!) (c). ((2n)!)/((2n-1)!(2n+1)!) (d). none of these

Prove that (^n C_0)/x-(^n C_0)/(x+1)+(^n C_1)/(x+2)-+(-1)^n(^n C_n)/(x+n)=(n !)/(x(x+1)(x-n)), where n is any positive integer and x is not a negative integer.

Let n is a rational number and x is a real number such that |x|lt1, then (1+x)^(n)=1+nx+(n(n-1)x^(2))/(2!)+(n(n-1)(n-2))/(3!).x^(3)+ . . . This can be used to find the sm of different series. Q. The sum of the series 1+(1)/(3^(2))+(1*4)/(1*2)*(1)/(3^(4))+(1*4*7)/(1*2*3)*(1)/(3^(6))+ . . . . is

The expansion (a+x)^(n) = .^(n)c_(0)a^(n) + ^(n)c_(1)a^(n-1)x + ………… + .^(n)c_(n)x^(n) is valid when n is

Let n is a rational number and x is a real number such that |x|lt1, then (1+x)^(n)=1+nx+(n(n-1)x^(2))/(2!)+(n(n-1)(n-2))/(3!).x^(3)+ . . . This can be used to find the sum of different series. Q. Sum of infinite series 1+(2)/(3)*(1)/(2)+(2)/(3)*(5)/(6)*(1)/(2^(2))+(2)/(3)*(5)/(6)*(8)/(9)*(1)/(2^(3))+ . . .oo is