Home
Class 10
MATHS
(ac+b^(2))/(bc)=...

`(ac+b^(2))/(bc)=`

A

`(a)/(b)+c`

B

`1+(ab)/(c )`

C

`(a)/(c )+b`

D

`(a)/(b)+(b)/(c )`

Text Solution

Verified by Experts

The correct Answer is:
D

`(ac+b^(2))/(bc)` is the sum of two fractions, `(ac)/(bc)` and `(b^(2))/(bc)`.
Each of these an be simplified :
`(ac)/(bc)=(a)/(b)xx (c )/(c )=(a)/(b)xx 1 = (1)/(b)`
`(b^(2))/(bc)=(bxxb)/(bc)=(b)/(c )xx(b)/(b)=(b)/(c )xx 1=(b)/(c )`
So `(ac+b^(2))/(bc)=(a)/(b)+(b)/(c )`.
Promotional Banner

Topper's Solved these Questions

  • PRACTICE TEST 3

    KAPLAN|Exercise PRACTICE TEST|50 Videos
  • QUADRATIC EQUATIONS AND THEIR GRAPHS

    KAPLAN|Exercise Multiple Choice Question|20 Videos

Similar Questions

Explore conceptually related problems

if a,and c are all non zero and a+b+c=0 , then prove that (a^(2))/(bc)+(b^(2))/(ac)+(c^(2))/(ab)=3.

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

Identify like terms in the following: abc, ab^(2)c, acb^(2), c^(2)ab, b^(2)ac, a^(2)bc, cab^(2)

"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2),bc),(ac,bc, x+c^(2)):}|," then prove that " f'(x)=3x^(2)+2x(a^(2)+b^(2)+c^(2)) .

"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2),bc),(ac,bc, x+c^(2)):}|," then prove that " f'(x)=3x^(2)+2x(a^(2)+b^(2)+c^(2)) .

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .

In a triangle ABC, 2B= A + C and b^(2) = ac , then (a(a+b+c))/(3bc) is

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

Choose the correct answer from the following : The value of |{:(bc,-c^2,ca),(ab,ac,-a^(2)),(-b^2,bc,ab):}|is:

If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}] and B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , then (A+B)^(2)=