Home
Class 12
MATHS
If A+B+C=pi and sinC+sinAcosB=0 then tan...

If `A+B+C=pi and sinC+sinAcosB=0` then `tanA cotB` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=piandsinC+sinAcosB=0 , then tanA.cotB is equal to

If A-B=pi/4 the (1+tanA)(1-tanB) is equal to:

If A+B+C=pi , then sinA-sinB+sinC=

If A+B = 90^@ and tanA = 3/4 then the value of cotB is

If A+B=(pi)/(4),then (tanA+1)(tanB+1) is equal to

If A+B+C=pi,\ t h e n\ |"sin"(A+B+C) sinB cosC -sinB 0 tanA "cos"(A+B) -tanA 0| is equal to a. 2sinB tanA cosC b. 1 c. 0 d. none of these

In a DeltaABC sum((cotA+cotB)/(tanA+tanB)) is equal to

(cot A+tanB)/(cotB+tanA) is :