Home
Class 12
MATHS
Let f:R->R be a function satisfying f...

Let `f:R->R` be a function satisfying `f((x y)/2)=(f(x)*f(y))/2,AAx , y in R and f(1)=f'(1)=!=0.` Then, `f(x)+f(1-x)` is (for all non-zero real values of `x`) a.) constant b.) can't be discussed c.) `x d.) 1/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R->R be a function satisfying f((x y)/2)=(f(x)*f(y))/2,AAx , y in R and f(1)=f'(1)=!=0. Then, f(x)+f(1-x) is (for all non-zero real values of x ) a.) constant b.) can't be discussed c.) x d.) 1/x

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is

Let a real valued function f satisfy f(x+y)=f(x)f(y)AA x,y in R and f(0)!=0 Then g(x)=(f(x))/(1+[f(x)]^(2)) is

Let f:R rarr R be a differential function satisfy f(x)=f(x-y)f(y)AA x,y in R and f'(0)=a,f'(2)=b then f'(-2)=

Let f(x) be a differentiable function satisfying f(y)f((x)/(y))=f(x)AA,x,y in R,y!=0 and f(1)!=0,f'(1)=3 then

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let f be a real valued function, satisfying f (x+y) =f (x) f (y) for all a,y in R Such that, f (1) =a. Then , f (x) =