Home
Class 11
MATHS
Prove that 1/2+1/(2^2)+1/(2^3)+...........

Prove that `1/2+1/(2^2)+1/(2^3)+........+1/(2^n)=1-1/(2^n), n in N`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : ^(2n)C_n = (2^n [1.3.5. ..........(2n-1)])/(n!) .

Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

For all nge1 , prove that 1/1.2+1/2.3+1/3.4+..........+1/(n(n+1))=n/(n+1)

Prove that 1(1) !+2(2) !+3(3) !+............ .+n(n) ! = (n+1) !-1

Prove that 1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(2n+1))

Prove that : 1^(2)+2^(2)+3^(2)+...+n^(2)=(n(n+1)(2n+1))/(6)

Prove that 1^(2)+2^(2)+3^(2)+.....+n^(2)=(n(n+1)(2n+1))/6

Prove that : 1+2+3++n=(n(n+1))/2

Prove that "^(2n)C_1 + ^(2n)C_3 + .... + ^(2n)C_(2n-1) = 2^(2n-1)