Home
Class 11
MATHS
l i(x->3)((x+1)-sqrt(x+13))/(x-3)...

`l i_(x->3)((x+1)-sqrt(x+13))/(x-3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

((1+x).3sqrt(x))/(sqrt(x))

Solve : (i) sqrt((x)/(x-3))+sqrt((x-3)/(x))=(5)/(2) (ii) ((2x-3)/(x-1))-4((x-1)/(2x-3))=3

lim_(x rarr1)(13sqrt(x)-7sqrt(x))/(5sqrt(x)-3sqrt(x))

Solve the equation: (sqrt(x+13)+sqrt(x-1))/(sqrt(x+13)-sqrt(x-1))=3 solution is {3/17}If true then enter 1 and if false then enter 0

If f(x)=cos^(-1)((1)/(sqrt(13)))(2cos x-3sin x)+sin^(-1)((1)/(sqrt(13)))(2cos x+3sin x)wdot rt sqrt(1+x^(2)) then find (df(x))/(dx) at x=(3)/(4)

The derivative of the function f(x)=cos^(-1)((1)/(sqrt(13))(2cos x-3sin x))+sin^(-1)((1)/(sqrt(13))(2cos x+3sin x)), with respect to sqrt(1+x^(2)) at x=(3)/(4) is

If (sqrt(2))^(x)+(sqrt(3))^(x)=(sqrt(13))^(x//2) , then the number of real values of x is

If (sqrt(2))^(x)+(sqrt(3))^(x)=(sqrt(13))^(x//2) , then the number of real values of x is

If L=lim_(x to oo) (x+1-sqrt(ax^(2)+x+3)) exists finitely then The value of L is