Home
Class 11
MATHS
l i(x->0)((1+x)^n-1)/x...

`l i_(x->0)((1+x)^n-1)/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x->0)[1+x+(f(x))/x]^(1/x)=e^3, then find the value of 1n(lim_(x->0)[1+(f(x))/x]^(1/x))i s____

Evaluate : (i) int_(0)^(1)x(1-x)^(n)dx (ii) int_(0)^(1)x(1-x)^(3//2)dx

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

L_(1)=lim_(x rarr0^+)(1+x)^(1/x),L_(2)=lim_(x rarr0^(+))(1+x)^(1/x^(2)),L_(3)=lim_(x rarr0^(+))(1+x^(2))^(1/x) ,Then

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

Use the formula l t_(x rarr 0)(a^(x)-1)/(x) = log_(e) a, to compute l t_(x rarr 0)(2^(x)-1)/(sqrt(1+x)-1)

The value of the integral I=int_(0)^(1)x(1-x)^(n) is