Home
Class 11
MATHS
l i(x->0)(sqrt(1+x)-1)/((1+x)^(1/3)-1)...

`l i_(x->0)(sqrt(1+x)-1)/((1+x)^(1/3)-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate(i) (lim)_(x->1)(x^(15)-1)/(x^(10)-1) (ii) (lim)_(x->0)(sqrt(1+x)-1)/x

Evaluate (i) (lim)_(x""->1)(x^(15)-1)/(x^(10)-1) (ii) (lim)_(x""->0)(sqrt(1+x)-1)/x

lim_(xto0)(3^(x)-1)/(sqrt(x+1)-1)

If int (1)/(x sqrt(1 - x^(3))) " dx = a log" | (sqrt(1- x^(3)) - 1)/(sqrt(1 -x^(3) )+ 1) | + b then a =

lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(3^(x)-1)=

lim_(x rarr0)(sqrt(1-x)-sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1+x))

Use the formula l t_(x rarr 0)(a^(x)-1)/(x) = log_(e) a, to compute l t_(x rarr 0)(2^(x)-1)/(sqrt(1+x)-1)

lim_(x rarr0)(3sqrt(1+x)3sqrt(-1-x))/(x)

lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1+x))/(sqrt(1+x^(3))-sqrt(1+x))

If l=int_(0)^(1)sqrt((1+x)(1+x^(3)))dx , then