Home
Class 12
MATHS
If sum(i=1)^n(xi+1)^2=9n and sum(i=1)^n(...

If `sum_(i=1)^n(x_i+1)^2=9n` and `sum_(i=1)^n(x_i-1)^2=5n`, then standard deviation of these 'n' observations `(x_1)` is: (1) `2sqrt(3)` (2) `sqrt(3)` (3) `sqrt(5)` (4) `3sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(n)(x_(i)+1)^(2)=9n and sum_(i=1)^(n)(x_(i)-1)^(2)=5n, then standard deviation of these backslash 'n' observations (x_(1)) is: (1)2sqrt(3)(2)sqrt(3)(3)sqrt(5)(4)3sqrt(2)

If sum_(i=1)^n (x_i -a) =n and sum_(i=1)^n (x_i - a)^2 =na then the standard deviation of variate x_i

If sum_(i=1)^9 (x_i - 5) = 9 and sum_(i=1)^9 (x_i - 5)^2 = 45. The standard deviation of the observations x_1, x_2,………,x_9 is ………….

lim_ (n rarr oo) sum_ (n = 1) ^ (n) (sqrt (n)) / (sqrt (r) (3sqrt (r) + 4sqrt (n)) ^ (2))

The standard deviation of n observations x_(1),x_(2),......,x_(n) is 2. If sum_(i=1)^(n)x_(i)=20 and sum_(i=1)^(n)x_(i)^(2)=100 then n is

In a group of data, there are n observations, x,x_(2), ..., x_(n)." If "sum_(i=1)^(n)(x_(i)+1)^(2)=9n and sum_(i=1)^(n)(x_(i)-1)^(2)=5n , the standard deviation of the data is

The standard deviation of n obervations x_(1),x_(2).....,x_(n) is 2. If sum_(i=1)^(n)x_(i)=20andsum_(i=1)^(n)x_(i)^(2)=100 , then n is

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)