Home
Class 9
MATHS
" (v) "(x^(3)-3x^(2)-x)(x^(2)-3x+1)...

" (v) "(x^(3)-3x^(2)-x)(x^(2)-3x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify each of the products: (x^(3)-3x^(2)-x)(x^(2)-3x+1)

underset(x to oo)lim ((x^(3))/(3x^(2)-1)-(x^(2))/(3x+1))=

Simplify each of the products: (x^3-3x^2-x)(x^2-3x+1)

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

int(x^(4)+3x^(3)+x^(2)-1)/(x^(3)+x^(2)-x-1)dx

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

int(dx)/((x^(3)+3x^(2)+3x+1)sqrt(x^(2)+2x-3))

int(dx)/((x^(3)+3x^(2)+3x+1)sqrt(x^(2)+2x-3))

Evaluate the following limits : Lim_(x to 1) (x^(4) - 3x^(3) +2)/(x^(3)-5x^(2)+3x+1)

Evaluate the following limit: (lim)_(x rarr1)(x^(4)-3x^(3)+2)/(x^(3)-5x^(2)+3x+1)