Home
Class 12
MATHS
If the maximum value of (sec^-1 x)^2 + (...

If the maximum value of `(sec^-1 x)^2 + (cosec^-1 x)^2` approaches a, the minimum value of `(tan^-1 x)^3 +(cot^-1 x)^3` approaches b then `(a+b/pi)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If the maximum value of (sec^(-1)x)^(2)+(cos ec^(-1)x)^(2) approaches a,the minimum value of (tan^(-1)x)^(3)+(cot^(-1)x)^(3) approaches b then (a+(b)/(pi)) is equal to

Find the minimum value of (sec^(-1) x)^(2) + (cosec^(-1) x)^(2)

Find the minimum value of (sec^(-1) x)^(2) + (cosec^(-1) x)^(2)

The value of sec^(-1)x+cosec^(-1)x is

The value of cosec (sec^-1 x + cosec^-1 x) is equal to :

The value of tan^(2) (sec ^(-1) 2) + cot^(2) (cosec^(-1) 3) is equal to

If 3 tan^-1 x + cot^-1 x = pi , then x equals

The value of 1/2{sec^2(tan^-1 2)+cosec^2(cot^-1 3)+tan^2(pi/3)} is equal to

If tan^-1 2x + tan^-1 3x = pi/2 , then the value of x is equal to