Home
Class 11
MATHS
if a>b>0 then the value of tan^(-1)(a/b)...

if a>b>0 then the value of `tan^(-1)(a/b) + tan^(-1)((a+b)/(a-b))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the value of tan^(-1)(a/b)-tan^(-1)((a-b)/(a+b))

Write the value of tan^(-1)a/b-tan^(-1)((a-b)/(a+b))

If a > b > 0,than the value of tan^(-1) (a/b) + tan^(-1) ((a+b)/(a - b)) depends on

Write the value of "tan"^(-1)(a/b)-"tan"^(-1)((a-b)/(a+b)) .

If a gt b gt 0 , then the value of tan^(-1)((a)/(b))+tan^(-1)((a+b)/(a-b)) depends on

The values of tan^-1(a/b)-tan^-1((a-b)/(a+b)) =?

The value of sec[tan^(-1)((b+a)/(b-a))-tan^(-1)((a)/(b))] is

The value of sec[tan^(-1)((b+a)/(b-a))-tan^(-1)(a/b)] is ____

The value of sec [tan ^(-1) (b+a)/(b-a)-tan ^(-1) (a)/(b)]