Home
Class 11
MATHS
If tan^(- 1)x+sin^(- 1)x=-(2pi)/3 then t...

If `tan^(- 1)x+sin^(- 1)x=-(2pi)/3` then the value of `cos^-1 x + cot^-1 x` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin cot^(-1)tan cos^(-1)x is equal to:

If tan^(-1)x+2cot^(-1)x=(2pi)/3 , then x is equal to

sin cot^(-1) tan cos^(-1) x is equal to :

If tan^(-1)4+cot^(-1)x=(pi)/(2), then value of x is

If tan^(-1)x + tan^(-1)y = (2pi)/(3) , then cot^(-1) x + cot^(-1)y is equal to

If tan^(-1)(-sqrt(3))+cot^(-1)x=pi , then the value of x is :

If x gt 0 , then the value of sin[cot^(-1)cos(tan^(-1)x)] is equal to -

If x gt 0 , then the value of sin[cot^(-1)cos(tan^(-1)x)] is equal to -

If x gt 0 then the value of sin [cot ^(-1) cos( tan^(-1)x)] is equal to-