Home
Class 10
MATHS
If logx(2+x)lt=logx(6-x) then x can be...

If `log_x(2+x)lt=log_x(6-x)` then x can be

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(x)(2+x)<=log_(x)(6-x) then x can be

If log_(12) (log_(7) x) lt 0 , then x belong to ______.

If log_(9)[(log_(8)x)]lt0 , then x belongs to ______.

If log_(x)(log_(2)x)*log_(2)x=3, then x is a ( an )

If log_(3)x-log_(x)27 lt 2 , then x belongs to the interval

If x satisfies log_(S)(2x+3) lt log_(s)7 , then x lies in:

If log_(3)x-log_(x)27 lt 2 , then x belongs to the interval

If "log"_(6) (x+3)-"log"_(6)x = 2 , then x =

If "log"_(6) (x+3)-"log"_(6)x = 2 , then x =

log_(2)|x| lt 3