Home
Class 12
MATHS
(1)/(1.2.3)+(1)/(2.3.4)+(1)/(3.4.5)+...+...

(1)/(1.2.3)+(1)/(2.3.4)+(1)/(3.4.5)+...+(1)/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2))

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+.......+(1)/(n(n+1))=(n)/(n+1),n in N is true for

1.2.3+2.3.4+....+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4

(1^(4))/(1.3)+(2^(4))/(3.5)+(3^(4))/(5.7)+......+(n^(4)) /((2n-1)(2n+1))=(n(4n^(2)+6n+5))/(48)+(n)/(16(2n+1))

1.2.3+2.3.4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/(4)

1.3+2.4+3.5+....+n(n+2)=(n(n+1)(2n+7))/(6)

If n is a non zero rational number then show that 1 + n/2 + (n (n - 1))/(2.4) + (n(n-1)(n - 2))/(2.4.6) + ….. = 1 + n/3 + (n (n + 1))/(3.6) + (n (n + 1) (n + 2))/(3.6.9) + ….

If n is a non zero rational number then show that 1 + n/2 + (n (n - 1))/(2.4) + (n(n-1)(n - 2))/(2.4.6) + ….. = 1 + n/3 + (n (n + 1))/(3.6) + (n (n + 1) (n + 2))/(3.6.9) + ….

(1^(3)+2^(3)+...+n^(3))/(1+3+5+...+(2n-1))=((n+1)^( 2))/(4)