Home
Class 12
MATHS
int (log (x+sqrt(1+x^2))/(sqrt(1+x^2))) ...

`int (log (x+sqrt(1+x^2))/(sqrt(1+x^2))) dx`

Text Solution

Verified by Experts

`int(log(x+sqrt(1+x^2))/sqrt(1+x^2)dx)`
Let `log(x+sqrt(1+x^2))=t`
`dx/sqrt(1+x^2)=dt`
`int tdt`
`t^2/2+c`
`[log(x+sqrt(x^2+1))]^2/2+c`.
Promotional Banner

Similar Questions

Explore conceptually related problems

int x(ln(x+sqrt(1+x^2))/sqrt(1+x^2)dx

int x(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx equals

int x((ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx

the value of int x*(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx

If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x^2))+bx+c then

If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x^2))+bx+c then

int(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx=a sqrt(1+x^(2))ln(x+sqrt(1+x^(2)))+bx+c, then (A)a=1,b=-1(B)a=1,b=1(C)a=-1,b=1 (D) a=-1,b=-1

int x((ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2))))dx=a sqrt(1+x^(2))ln(x+sqrt(1+x^(2)))+bx

If int(x*ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx=A*sqrt(1+x^(2))ln(x+sqrt(1+x^(2)))+Bx+c , then (3A^(2)+5B^(2))/(A-B) equal to __________.

The value of int(log_(e)(x+sqrt(x^2)+1))/(sqrt(x^(2)+1))dx is