Home
Class 12
MATHS
" 7.Prove that: "cos^(-1)x=2sin^(-1)sqrt...

" 7.Prove that: "cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)x=2sin^(-1)(sqrt (1-x)/sqrt2)

Prove that cos ^(-1) x = 2 sin ^(-1).sqrt(1-x)/(2)

Prove that cos ^(-1) x = 2 sin ^(-1).sqrt(1-x)/(2)

Prove that cos^-1x=2sin^-1sqrt((1-x)/2)

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Prove the followings : cos^(-1)x=2sin^(-1)sqrt((1-x)/2)=2cos^(-1)sqrt((1+x)/2)

Prove that 1/2cos^-1x=sin^-1sqrt((1-x)/2)=cos^-1sqrt((1+x)/2) .

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

cos^(-1)x= 2 sin ^(-1) sqrt((1-x)/(2))=2 cos ^(-1)""sqrt((1+x)/(2))=2tan^(-1)""(sqrt(1-x^(2)))/(1+x)