Home
Class 12
MATHS
f(x)=1+2sinx+3cos^2x, 0<=x<=(2pi)/3 is...

`f(x)=1+2sinx+3cos^2x, 0<=x<=(2pi)/3` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the extremum of f(x)=1+2sinx+3 cos^2x ,0lt=xlt=(2pi)/3

Discuss the extremum of f(x)=1+2sinx+3 cos^2x ,xlt=xlt=(2pi)/3

Discuss the extremum of f(x)=1+2sinx+3 cos^2x ,xlt=xlt=(2pi)/3

The domain of f(x)=2sinx+3cos x+4 is :

If f(x)=cos^-1(sinx(4cos^2x-1)), then 1/pif'(pi/3).f(pi/10) is

Find the maximum and minimum values of f(x)=sinx+1/2cos2x in [0,\ pi/2] .

If f(x)=(1-sin2x+cos2x)/(2cos2x), then the value of f(16^(0))*f(29^(0)) is (1)/(2)(1)/(4)1(3)/(4)

If f(x)=int(sinx)/(cos^(2)x)(1-3sin^(3)x)dx , then value of (f(0)-f(pi)+(9pi)/2) is

Solve: 2(sinx -cos2x)-sin2x(1+2sinx) + 2cosx =0