Home
Class 12
MATHS
The maximum value of (9 + x)^3(5 - x)^4,...

The maximum value of `(9 + x)^3(5 - x)^4`, if `x in (-9,5)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of x^4+3x^3-2x^2-9x+6 is

If x is real, the maximum value of (3 x^(2)+9 x+17)/(3 x^(2)+9 x+7) is

if x is real , the maximum value of (3x^2+9x+17)/(3x^2+9x+7) is

If x is real,the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is

The maximum and minimum value of f(x)=(x-8)^4(x-9)^5 occurs at x=

Find the value of x^4 + 9 x^3 +35 x^2 -x+164, if x=-5+4i

Find the maximum value of 3sin(x+(pi)/(9))+5cos(x+(pi)/(9)), AA x in R

Find the value of x ^(4) + 9 x ^(3) + 35 x ^(2) - x + 4, if x =- 5 + sqrt ( -4).