Home
Class 11
MATHS
int(6)^(1)(1)/(sqrt(x^(2)+a^(2)))*dx=log...

int_(6)^(1)(1)/(sqrt(x^(2)+a^(2)))*dx=log(x+sqrt(x^(2)+a^(2)))+c

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(x^(2)-a^(2)))=log(x+sqrt(x^(2)-a^(2))+c

int(1)/(sqrt(a^(2)+x^(2)))dx=log(x+sqrt(x^(2)+a^(2))+c

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx

int_(0)^(1)(x^(2)ln x)/(sqrt(1-x^(2)))dx

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

The value of int_(-1)^(1) ((logx+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x sqrt(1+x^(2))))/(x+log(x+logsqrt(1+x^(2))))f(-x)dx ,

int(1)/(sqrt(a^2+x^2))dx=log|x+sqrt(a^2+x^2)|+c

int 1/ sqrt (a^2 + x^2) dx = log ( x + sqrt(x^2 + a^2)) + c

int_(-1)^(1) log (x+sqrt(x^(2)+1))dx =

int_(-1)^(1)log(x+sqrt(x^(2)+1))dx=?