Home
Class 12
MATHS
int(0)^(k)(1)/(2+8x^(2))dx=(pi)/(16)...

int_(0)^(k)(1)/(2+8x^(2))dx=(pi)/(16)

Promotional Banner

Similar Questions

Explore conceptually related problems

if int_(0)^(k)(dx)/(2+8x^(2))=(pi)/(16) then find the value of k

If int_(0)^(a)(1)/(1+4x^(2))dx=(pi)/(8) , then a =

Fundamental theorem of definite integral : If int_(0)^(k)(dx)/(1+4x^(2))=(pi)/(8) then k =……..

int_(0)^(a)(dx)/(4+x^(2))=(pi)/(8) , find a

If int_0^(k) (dx)/(2+8x^(2)) = pi/16 then k =

int_(0)^( pi/8)(1)/(1+4x^(2))dx=?

If int_(0)^(a) (1)/(1+4x^(2)) dx = pi/8 , then a=

If int_(0)^(a) (1)/(1+4x^(2)) dx = pi/8 , then a=

If int_(0)^(a) = ( 1)/( 4+x^(2))dx = ( pi)/( 8) then a is

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2