Home
Class 11
MATHS
" Matrix "A" is given by "A=[[6,11],[2,4...

" Matrix "A" is given by "A=[[6,11],[2,4]]" then the determinant of "A^(2015)-

Promotional Banner

Similar Questions

Explore conceptually related problems

" If matrix " A" is given by "A=[[8,10],[3,4]]," then the determinant of "A^(2021)-8A^(2020)" is "

If matrix A is given by A=|[6, 11], [2, 4]| , then the determinant of A^(2005)-6A^(2004) is a. 2^(2006) b. (-11)2^(2005) c. -2^(2005) d. (-9)2^(2004)

If matrix A is given by A=|[6, 11], [2, 4]| , then the determinant of A^(2005)-6A^(2004) is a. 2^(2006) b. (-11)2^(2005) c. -2^(2005) d. (-9)2^(2004)

If matrix A is given by A=[[6,112,4]], then the determinant of A^(2005)-6A^(204) is 2^(2006)b(-11)2^(2005)c.-2^(2005)d.(-9)2^(2004)

If matrix A is given by A= [[8,10] , [3,4]] then the determinant of A^(2021)-8A^(2020)=

If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005)-6A^(2004) is

If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005)-6A^(2004) is

" The matrix "P" is given by "P=[5,6^(-)],[3,4]" then the determinant of "P^(2022)-4P^(2021)" is equal to "

If A=[[6,112,4]] then the determinant of A^(2015)-6A^(2014) is

If matrix A is given by A=[[6,112,4]] then determinant of A^(2005)-6A^(2004) is