Home
Class 12
MATHS
If 3^(log2x)=4^(log2x-1) then x is equal...

If `3^(log_2x)=4^(log_2x-1)` then x is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83), then x is equal to

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If log_(3){5+4log_(3)(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) log_(2)16

Match the column Column I, Column II If x=3,t h e n(log)_4(2(log)_3(1+(log)_2(1+3Log_3x))) is equal to, p. 3 If x=100 , then 3^((log)_3logsqrt(x))-logx+log^2x is equal to, q. 1 If one of the root of the equation 2((log)_xsqrt(5))^2-3(log)_x(a)+1=0 is sqrt(5) , then the other root is, r. 1/2 If (log)_2(4. 3^x-6)-(log)_2(9^x-6)=1, then x is equal to, s. 5

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to