Home
Class 11
MATHS
" If "f(x)=(sin(e^(x-2)-1))/(log(x-1)),"...

" If "f(x)=(sin(e^(x-2)-1))/(log(x-1))," then "lim_(x rarr2)f(x)" is given by "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =(sin (e^(x-2)-))/(log(x-1)) then lim_(xrarr2)f(x) is given by

If f(x) = (sin (e^(x-2) - 1))/(log (x - 1)) , then lim_(x rarr 2) f(x) is given by :

let f(x)=(ln(x^(2)+e^(x)))/(ln(x^(4)+e^(2x))) then lim_(x rarr oo)f(x) is

If f(x)={(3x-1),x>=1,(2x+3),x =2} then lim_(x rarr2)f(g(x))=

If f(x)=(x^(2))/(1+x^(2)), prove that lim_(x rarr oo)f(x)=1

Evaluate: lim_(x rarr2)(sin(e^(x-2)-1))/(log(x-1))

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

If f(x)=int((2sin x-sin2x)/(x^(3))dx);x!=0 then lim_(x rarr0)f'(x) is: (A) 0(B)oo(C)-1 (D) 1

Value of lim_(x rarr 3)(sin(e^(x-3) -1))/log(x-2) is