Home
Class 10
MATHS
f(sin^(2)theta+3cos^(2)theta=4," show th...

f(sin^(2)theta+3cos^(2)theta=4," show that "tan theta=(1)/(sqrt(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

If 7sin^(2)theta+3cos^(2)theta=4, show that tan theta=(1)/(sqrt(3))

If 7sin^(2)theta+3cos^(2)theta=4 then show that tan theta=(1)/(sqrt(3))

If 7sin^2theta+3cos^2theta=4 , show that tantheta=1/sqrt(3)

If 7sin ^2theta +3cos^2theta =4 , prove that, tan theta =pm1/sqrt(3) .

if 3cos^(2)theta+7sin^(2)theta=4, show that cot theta=sqrt(3)

If (sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2 tan theta cot theta=-1 (AA theta in[0, 2pi], then

If (sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2 tan theta cot theta=-1 (AA theta in[0, 2pi], then

(sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2tan theta*cot theta=-1

(sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2tan theta cot theta=-1

If 7sin^(2)theta +3cos^(2)theta = 4 and 'theta' is acute show that cot theta = sqrt(3) .