Home
Class 7
MATHS
" If "a=3^(-3)-3^(3)" and "b=3^(3)-3^(-3...

" If "a=3^(-3)-3^(3)" and "b=3^(3)-3^(-3)," then "(a)/(b)-(b)/(a)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=(3^(-3)-3^(3)) , and b=(3^3-3^(-3)) , then find the value of (a)/(b)-(b)/(a) .

if a-b=3 and a^(3)-b^(3)=117 then a+b is

a^(3)-9b^(3)+(a+b)^(3)

The value of 2a^(3)-[3a^(3)+4b^(3)-{2a^(3)+(-7a^(3))}5a^(3)-7b^(3)] is (a) -11a^(3)+3b^(3)( b) 7b^(3)+3a^(3)(c)11a^(3)-3b^(3) (d) (11a^(3)+3b^(3))

|A-B| ne 0 , A^(4)=B^(4) , C^(3)A=C^(3)B , B^(3)A=A^(3)B , then |A^(3)+B^(3)+C^(3)|=

|A-B| ne 0 , A^(4)=B^(4) , C^(3)A=C^(3)B , B^(3)A=A^(3)B , then |A^(3)+B^(3)+C^(3)|=