Home
Class 11
MATHS
f(x)=(1)/(sqrt(|[|x|-1]|-5)),[.]" is the...

f(x)=(1)/(sqrt(|[|x|-1]|-5)),[.]" is the greatest integer function."

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(1)/(sqrt(|||x|-1]|-5)),[.] is the greatest integer functio.

Find the domain of definition of the following functions : (i) f(x) = log_(10) sin (x-3) + sqrt(16 - x^(2)) (ii) f(x) = sqrt((4- |x|)/(7-|x|)) (iii) f(x) = (1)/(sqrt([|x|-1]|-5)) where [x] denotes the greatest integer function.

The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is:

The greatest integer function f(x)=[x] is -

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

If f(x)=(x^(2)+1)/([x]) , ([.] denotes the greatest integer function), 1 le x lt 4 , then

Find the domain of the following function: f(x)=5/([(x-1)/2])-3^(sin^(-1)x^(2))+((7x+1)!)/(sqrt(x+1)) , where [.] denotes greatest integer function.

Find the domain of the following function: f(x)=5/([(x-1)/2])-3^(sin^(-1)x^(2))+((7x+1)!)/(sqrt(x+1)) , where [.] denotes greatest integer function.

The domain of the function f(x)=(1)/([x^(2)-1] is (where [.] is greatest integer function)

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is