Home
Class 12
MATHS
If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 t...

If `tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2` then prove that `yz+zx+xy=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1) z=(3pi)/(2) then prove that xy+yz+zx=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), prove that xy+yz+zx=1

If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x+ y + xyz = z .

If tan^(-1)x+tan^(-1)y=(pi)/(2), then prove that xy=1

If Tan^(-1)x+Tan^(-1)y + Tan^(-1)z = (pi)/2 , then prove that xy + yz + zx = 1

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If Tan^(-1) x + Tan^(-1) y + Tan^(-1) z = pi then prove that x+y+z = xyz .